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Abstract

This study attempts to clarify the conditions under which the J-integral is path-independent in U- and V-shaped
notch problems. The key is to determine the contribution to the J-integral evaluated in the global coordinate system
from the second component of the Ji-vector evaluated in the local coordinate system along the traction-free surfaces
that form part of the integration path. It is found that the global J-integral is path-independent only if the projected
contribution from the J,-integral to J vanishes. The J-integral for a V-shaped notch is, strictly speaking, path-
dependent even under remote symmetrical loading. This is due to the fact that, unlike in the case of a line- or plane-
crack, the value of the J-integral calculated along a closed contour surrounding the V-shaped notch is dependent on the
selection of the starting and ending points on the notch surface. In other words, the traction-free surface of the
V-shaped notch does contribute to the J-integral due to the non-zero projected values induced from the J,-integral.

For a U-shaped notch, the path-independence of the J-integral is established if the integration path completely
encloses the notch root. This is because both the upper and lower notch surfaces of the U-shaped notch are parallel to
the geometric symmetrical line (the x;-axis) and hence the projected values from the J;-integral vanish. Furthermore, it
is found that the small arc at the root of the notch (whether U- or V-shaped) also contributes to the J-integral even if
the remote loading is symmetrical. These conclusions are derived by detailed analytical manipulations and by numerical
examples; the analytical solution obtained by Lazzarin and Tovo [Int. J. Fracture 78 (1996) 3] and Lazzarin et al. [Int. J.
Fracture 91 (1998) 269] for stress field in the vicinity of a notch root in an infinite elastic plane is used to calculate the
contribution induced from the arc with different radii. Some useful results for studying the fracture and fatigue of
notches are discussed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to assess and forecast the service life of structural components containing highly stress
concentrated notch-like defects is of great practical significance. There have been a number of investigations
aiming at predicting the fatigue life after crack initiation commences from a notch: recent contributions in
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this field include Kujawski (1991), Shin et al. (1994), Xu et al. (1995), Lazzarin and Tovo (1996), Lazzarin
et al. (1998), Atzori et al. (1997), and Kujawski and Shin (1997). However, all these studies focus either on
how to calculate stress concentration factors and the associated stress distributions ahead of the notch
before crack initiation has occurred (from which the degree of accuracy for predicting fatigue crack ini-
tiation and subsequent crack propagation could be ensured), or on how to measure crack-growth resistance
curves (i.e., R curves) from notch specimens.

The path-independence of J-integral for plane cracks is well-known and widely exploited for studying
fracture in both linear and non-linear elastic materials (Rice, 1968a,b; Eshelby, 1970). This integral has also
been applied in situations where the crack is blunt (i.e., U- or V-shaped notches). Some major contributions
in this field can be found in the works by Blackburn (1972, 1977), Hutchinson (1979), McMeeking (1980),
Elhaddad et al. (1980), Atluri (1982), Castro (1982), Ranaweera and Leckie (1982), Batte et al. (1983),
Sinclair and Mullan (1982), Sinclair et al. (1984), Kanninen and Popelar (1985), and Glinka and Newport
(1987). These studies directly lead to the ASTM Standards (1990) for measuring R curves based on notch
specimens. However, the necessary conditions of the J-integral application, under which its path-inde-
pendence is valid, have received little attention.

Generally speaking, the widely recognized view regarding the use of the J-integral is that the traction-
free surfaces of a crack (or notch) does not yield any contribution to the integral evaluated along an ar-
bitrarily selected close contour originating from a point on the lower crack (notch) surface and extending
counterclockwise around the crack (notch) tip to a point on the upper surface (see, e.g., Kanninen and
Popelar, 1985). In other words, the value of J does not depend on the selection of the starting and ending
points of the integration path. However, to the authors’ best knowledge, there appears to be no detailed
account of the necessary conditions under which the path-independence of the J-integral is ensured. Evi-
dences cited in this paper reveal that these conditions are sometimes overlooked (apart from the known
necessary condition that the stress path should be proportional or nearly proportional in the material),
which may lead to the misinterpretation or even incorrect use of the integral.

To proceed forward, we note that the J-integral as proposed by Rice (1968a,b) is only the first com-
ponent of a vector J; (k = 1,2), representing the component of the vector in the direction parallel to the x;-
axis (here and below, the x;-axis is customarily chosen along the geometrical symmetrical line of a notch or
a crack). For a single plane crack, the J;-vector is given by (Knowles and Sternberg, 1972; Budiansky and
Rice, 1973):

Jk = %Co(wnk — u,-‘kT,») ds (k = 1,2) (1)

where w denotes strain energy density, n; is unit outward normal vector to the closed contour Co, and u;, T;
are displacement and traction vectors, respectively. The second component, J,, is less popular than J(= J;)
due to its path-dependence nature (Herrmann and Herrmann, 1981). The closed path Co is chosen such
that it surrounds one crack tip and does not enclose the other tip (or other singularities). Otherwise, if the
path Co encloses the crack completely, the trivial result J; = J, = 0 holds (Herrmann and Herrmann, 1981).
Recent investigations show that J; =J, = 0 is still valid even when Co encloses strongly-interacting mul-
tiple cracks, so long as there is no other singularity outside Co and the projected values induced from both
components of the vector are taken into account (Chen and Hasebe, 1998).

Two typical notch problems are analyzed in this paper, one associated with the V-shaped notches and
the other with the U-shaped notches. For simplicity, notches embedded in two-dimensional, infinitely large
solids are considered (Fig. 1). Detailed manipulations (Section 2) and numerical calculations (Section 3) are
presented to show that caution must be taken when applying the J-integral in notch problems. It will be
demonstrated that the traction-free surfaces of a notch could not always ensure the path-independence of J,
if the surfaces are partially or entirely inclined (or curved) with respect to the global x;-axis (i.e., the
symmetrical line of the notch). It is found that J is path-independent for a U-shaped notch if the notch root
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Fig. 1. Notations and coordinate systems for a notch subjected to combined opening and shear loading at remote.

is completely enclosed by the selected integration path, and always path-dependent for a V-shaped notch.
For the latter, the J,-integral evaluated in a local system that traverses along the inclined surface has a non-
vanishing projected value on the global x,-axis, causing the J-integral to be dependent upon the selection of
the starting and ending points of the integration path on notch surfaces. Furthermore, the traction-free arc
at the root of a V- or U-shaped notch always contributes to the J-integral, as a result of the projected value
induced from the J,-integral.

2. A notch under remote mixed-mode loading

The purpose of this section is not to deal with crack initiation and fatigue problems associated with
notches, but to provide the necessary conditions under which the path-independence of the J-integral is
valid. Special attention is directed at clarifying the important role of the J,-integral in notch-like problems.

_With reference to Fig. 1, consider a V-shaped notch (i.e., a blunt crack) defined by a small circular arc
DEB, radius R and centered at the origin O of the global coordinate system (x,x,) and two straight seg-
ments AB and CD inclined at an angle 4y with respect to the x;-axis. A U-shaped notch is defined as the
special case of the V-notch with y = 0. Tensile stress ¢35 and shear stress o3 are applied at remote, per-
pendicular and parallel to the geometric symmetric line of the notch, respectively. Three different closed
contours I'y, I'; and I'; are introduced in Fig. 1, originating separately from points D, C, and F on the lower
surface of the notch and ending at points B, 4, and H on the upper surface. The length of 4B equals that of
CD, but HB has a length different from that of FD.

Because the J-integral is widely accepted as path-independent, one may customarily assert that J
evaluated along the above three closed contours should have identical values. For instance, some mani-
pulations and applications of J for a blunt crack were performed (see, e.g., McMeeking, 1980), and a test
method for determining the R curves from notch specimens was standardized by ASTM (1990). However,
as demonstrated below, this assertion has been based on the condition that the traction-free notch surfaces,
i.e., arc DEB plus the two inclined straight segments, do not contribute to J (= J;) defined in the global
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system. In fact, whether or why the basic condition is satisfied remains unclear since the role of the second
component of the J;-vector, J,, in blunt crack problems is yet to be clarified.

Whilst J, is in general path-dependent, it will be shown next that the path-independence of J is only
conditional, which should be used with caution when extrapolated to situations where the basic condition
may be violated. To calculate J for a blunt crack (Fig. 1), consider first the contribution of segment AB and
denote it by J; in the global coordinate system (x,x,). From (1), it follows that:

Jug = J\ypcos(n — ) = Jypsin(m —9) = —J{jcosy =y siny (2)
where Jl% and Jz% are the two components of the Ji-vector calculated in the local coordinate system

(xi",x{") on segment 4B in Fig. 1. Since 4B is traction-free, we have:

Iy = [ ol as ()
AB

Jh - / wr ds (4)
AB

where n,(f) (k =1,2) are the components of the unit outward normal vector to the segment 4B (Fig. 1).

Now, since nil) = 0 but ngl) = 1in the (x(ll),xgl)) system, Eq. (3) and hence the first term on the right-hand

side of Eq. (2) vanishes. However, Eq. (4), i.e., the second term in (2) does not, given instead by:
(1) ’ Lt iy g
Doup = wds = b (1)) dx;) (5)
A B

where ds = —dx(IU (Fig. 1) has been used, and E = E for plane stress and E/(1 — v?) for plane strain, with £
and v representing the Young’s modulus and Poisson’s ratio, respectively. Apparently, the normal stress aﬁ‘ﬁ
parallel to segment AB contributes to JZ(Z;. As pointed out by Herrmann and Herrmann (1981), agp in
general does not vanish even though the surface of 4B is traction-free. Consequently, the second component
of the J,El)-vector evaluated in the local coordinate system along AB has non-zero contribution to J,z in Eq.
(2). Moreover, different choices of 4B will generate different contributions to J.

For segment DC on the lower surface of the notch, the following result holds:
Joe = Jipe 08y — Jypesiny (6)
where

2
J1<D)C:O
o _ L[ o0 L P oo
Jznczf/D (o17) ds:f/c (o17) dx
@ 0

Here, the superscript (2) refers to quantities associated with the local coordinate system (x;”,x,”), and
ds = —dx(lz), as shown in Fig. 1. Again, different selections of segment DC will lead to different and, gen-
erally speaking, non-zero contributions to Jpc.

More importantly, J,5 in Eq. (2) is negative since Jz(?s in (5) is positive, whereas Jpc of (6) is also negative
since Jz(?c of (7) is positive. Thus, J,3 and Jpc do not cancel each other, even though the remote loading is
symmetrical with ¢35 = 0 (Fig. 1).

In order to further clarify the situation, the values of J evaluated along three different paths I'y, I'; and
I'y are compared. It is straightforward to show that:

(7)

Jri+Jps —Jr2+Jep =0 (8a)
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or, equivalently:

Jri =Jr2+ (Jus + JIpc) (8b)
Since the sum J,z + Jpc does not vanish, it follows that:
Jfl 7& JF2 (9)

We have therefore proved that the J-integral is path-dependent in V-shaped notch problems. In addition,
for path I';, the segments AH and CF have different lengths, and:

I =Jrs — (Jaw + Jrc) (10)

Due to the different contributions induced from .J, along the two segments AH and CF, the bracketed term
in (10) does not vanish except in the limit when y = 0. It is therefore clear that J depends also on the se-
lection of the starting and ending points of the path on the upper and lower surfaces of the notch. Indeed,
these contributions are dependent on the selection of points F and H as well as points 4 and C, resulting in:

Jra # Jr3 (11)

The above results reveal that for a V-shaped notch, the path-independence of J is conditional, and hence
must be dealt with cautiously. Only when the surfaces of the notch are parallel to its geometrical symmetry
line, i.e., the x;-axis, with y =0 (i.e., a U-shaped notch), could the contributions induced from notch
surfaces to J vanish. In other words, only when the ;)rojected values of the second component of the J;-
vector defined in the local systems (x!",x{"), or (x¥ x{”), do not contribute to J defined in the global
system (x;,x,) could the value of J be independent of the selection of the starting and ending points on the
notch surfaces for the closed contour.

The above manipulations further reveal that the second component of the Ji-vector plays an important
role. Therefore, for traction-free surfaces, attention should be focused on this component in local systems
and its contribution to J in the global system. _

Let us revisit the configuration shown in Fig. 1. The non-trivial contribution induced from the arc DEB
to J can be estimated in a way analogous to that for straight segments, and hence will not be repeated
below. However, it should be pointed out that the contribution of DEB to J does not vanish even if the
notch has surfaces parallel to the x;-axis (i.e., the U-shaped notch), and this conclusion still holds even
under pure Mode I loading with ¢{5 = 0. Furthermore, when the normal stress parallel to the tangential

direction at any point on the arc DEB becomes large due to stress concentration near the notch root, its
contribution to J is also likely to be large. The contribution induced from the whole arc may therefore yield
considerable errors in J-integral applications, e.g., the R curve evaluation, as demonstrated in the next
section.

3. Notch root contribution: numerical examples
To support the above conclusions, numerical calculation is needed to quantify the contribution induced

from the whole arc DEB at the notch root (Fig. 1). For simplicity, a circular arc with radius R is assumed.
The contribution of the arc to J is

1R . [ .
Jro === / (A O Rsin ¢do = —— / 08 (0) R sin(n/2 + 0)do
2 %
L e 0)| R cos 00 12
=z /g/2 [a“ ( )} cos (12)
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where the angles ¢ and 0 are defined in Fig. 1, 05?(0) refers to the normal stress component along the
tangential direction on the surface of the circular arc defined in a local coordinate system (xﬁ‘”,xé”), {=m
for a U-shaped notch, and { = = — 2y for a V-shaped notch.

Note that the integrand in (12) is an even function of 0 so that the integral J,.., generally speaking, does
not vanish. In other words, the contribution induced from the upper half arc and that from the lower half
arc do not cancel each other even if the far-field loading is symmetrical with 675 = 0; rather, the two
contributions add to yield the total contribution from the arc. Therefore, Eq. (12) has provided a clear
evidence on the non-zero contribution from the notch root to J. The total J of the notch is the sum of J,,.
and the J-integral along a path away from the notch root that does not contain any of the notch surfaces
(e.g., path I'; or I'; in Fig. 1).

_To calculate J,, one needs to know the detailed distribution of stress component 0(131)(0) along the arc
DEB (Fig. 1). This component is related to stresses a1, 612, 02, defined in the global system (x;,x,) by:

o (0) = 611 cos> ¢ + 201> sin ¢ cos P + o sin® P (13)
where ¢ = n/2 4 0. Although there have been numerous investigations on notch problems, most focus
either on stress concentration just ahead of the notch or on a small crack initiating from the notch root due
to fatigue. However, the illuminating work of Lazzarin and Tovo (1996) and Lazzarin et al. (1998) does
provide an analytical solution with first order approximation for near-notch surface stresses. For com-
pleteness, a concise summary of stress distribution near the notch root is given in Appendix A.

Two scenarios are considered: y = 0° and y = 15° (Fig. 1), corresponding to a U-shaped notch and a V-
shaped notch, respectively. The parameters associated with the first order approximation of Lazzarin and
Tovo (1996) are calculated as:

ro=R/2, 2=05 =10, u=-05 (14a)
for y = 0°, and
ro=R/2.2, A1=0.5015 x=1.0710, p=—0.4239 (14b)

for y = 15°. The definitions of ry, 4, y and u are given in Appendix A. The maximum stress at the notch tip
is linked to a field parameter K, by means of notch root radius and opening angle 2y (implicitly via o and 4,
respectively):

* o A—1
Omax — 4K1 To (15)
V2[(1+ 2) + 5(1 = )]
where
Ky = m%il}}(‘m)o:oRlii (16)

Here, g is the hoop stress, and K| represents a field parameter proportional to the remote stress 655, which
degenerates in the case of R=0 and y =0 to the conventional stress intensity factor K; (Gross and
Mendelson, 1972). When SI units are adopted, the length parameters such as the notch root radius R are
expressed in meters, the stresses 055 and o,y as well as the Young’s modulus E are in MPa, and the J-
integral is in MN/m, respectively. For a U-shaped notch with zero opening angle, the ratio gp.x/K; has unit
m~">. On the other hand, for a V-shaped notch with an opening angle 2y = 30°, the unit of Gy, /K; is
m~04986 The difference between these two kinds of notches is therefore small for the purpose of engineering
design, but physically this fact should be highlighted especially when the notch root ratio R tends to zero.
This is because the solution of Lazzarin and Tovo (1996) is only a first order approximation. Consequently,
it is unclear whether the parameters (r, 4,y, ;) associated with the first order approximation remain
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unchanged as the notch root ratio R tends to zero. In other words, only if Gy, /K; has unit m=*> will K; be
considered as the conventional stress intensity factor.

According to Gross and Mendelson (1972), a natural expression of the normalized J-integral for U- and
V-shaped notches is

Yy [ K& 1
Jarc = ER[W] (173)

where Y is a non-dimensional parameter introduced for numerical analysis, the subscript arc refers to the
quantity contributed by the notch arc only, and 6R'~*' is introduced by Gross and Mendelson (1972) as:

K; = 6R" ™ 0max (17b)

Thus, upon suitable coordinate transformation and substitution of Eq. (A.5) into (13) and subsequently
into (12), the normalized value of the J-integral induced from the projected value of the J,-integral eva-
luated along the whole arc, with 0 ranging separately from —n/2 to n/2 for a U-shaped notch and from
—5n/12 to 5n/12 for a V-shaped notch, is given by:

Jare = %{Gmax}zR (170)

After calculating the contribution of the notch arc to J,, it is found that ¥ = 0.5453 for the U-notch and
0.5004 for the V-notch (y = 15°). It is worth mentioning that Y is dependent of the notch opening angle y,
but not the notch root radius R. It is emphasized here that Y is independent of R because, in the present case
where the solid is infinitely large, there is no other length scale that can be used to normalize R. This
conclusion is no longer valid for a finite notch in a finite plane solid, which can be solved using, say, the
finite element method (FEM). In other words, the numerically calculated values of ¥ in (17a,c) will be
different if different lengths of the finite notch, say a, are used to normalize the root radius R. It is expected,
however, that in the limit when R/a — 0, Y will approach a constant, e.g., 0.5453 for a U-notch.

It is intriguing to note that the Y value for a U-notch is larger than that for a V-notch under the same
remote loading conditions. However, it should be emphasized that Eq. (17a) or (17c) does not account for
the contribution of the upper and lower straight lines of the V-notch, and that the calculation for the U-
notch is performed from —=n/2 to n/2 and for the V-notch from —5z/12 to 57/12 (y = 15°). Again, this
conclusion is no longer valid for a finite notch in a finite plane solid, which can be solved with FEM if the
numerically calculated values of Y in (17a,c) contain the contribution induced from the upper and lower
straight lines for the V-shaped notch. The predicted J,,. values are listed in Table 1 for a U-shaped notch
with r9/R = 0.5; the following cases are considered: ry = 0.125, R = 0.25; r, = 0.25, R=10.5; ry, = 0.5,
R=10; r,=0.75 R=1.5; r,=1.00, R=2.00; ry=1.25, R=2.50; ry=1.50, R=3.00; ry=1.75,
R =3.50; and ry = 2.00, R = 4.00. Similarly, Table 2 presents the predicted values of J,, for a V-shaped
notch with ry/R = 0.4545; the following cases are considered: ry = 0.125, R = 0.275; ry = 0.25, R = 0.55;
ro = 0.500, R = 1.100; ry = 0.750, R = 1.650; ry = 1.00, R = 2.200; ry = 1.25, R = 2.75; ry = 1.50, R = 3.30;
ro = 1.75, R = 3.85; and ry = 2.00, R = 4.4. The numerical results of Tables 1 and 2 not only confirm our
calculations but also confirm the independence feature of Y.

Table 1
Normalized values of J. for a U-shaped notch with root ratio ry/R = 0.5
‘]‘dl'CE
o /R Y = \/ﬁamax

R(Umax)z Kl*
0.5 0.5453 1.128
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Table 2
Normalized values of Jy for a V-shaped notch with root ratio ry/R = 0.4545
HFCE R max
Vo/R Y= Jiz \/70;
R(Omax) Ki
0.4545 0.5004 0.7852

Note that, for a fixed notch root radius, the J-integral associated with a U-shaped notch is always larger
than that associated with a V-shaped notch. This implies that the arc of the U-shaped notch yields more
contribution to J than that of the V-shaped notch, for two reasons. Firstly, the upper and lower integration
limits in (12) for the V-notch, +(n/2 — y), are smaller than those for the U-notch, £r/2. Secondly, whilst
the straight surfaces of the U-notch are parallel to the x;-axis and hence yield no contribution to J, the
inclined surfaces of the V-notch have non-zero contributions to the J. As the calculation of the contri-
butions induced from the two inclined surfaces requires not only detailed knowledge on the distribution of
normal stress along the tangential direction of the surfaces but also integration over an infinite interval yet
to be determined, it is deemed beyond the scope of this paper.

Again, it should be emphasized that although the Y values listed in Table 2 are independent of R, this
conclusion cannot be extrapolated to a finite V-shaped notch in a finite plane solid. For both U- and
V-shaped notches, Y is a function of R/a, with Y approaching asymptotically a constant when R/a — 0.

4. Discussion

Egs. (17a) or (17c) provides a fundamental understanding of the J-integral analysis in situations where
inclined or curved traction-free surfaces are concerned. The necessary conditions under which J is path-
independent have been clarified in detail, which is of significance in practical applications of the integral. Of
great interest is that numerical results of the normalized J-integral are independent of the notch root radius
R (or ry) for a U-notch (Table 1), and are insensitive to variations in R for a V-notch (Table 2). These results
are actually expected, which not only validate the present calculations, but also confirm the analytical
formulations presented by Lazzarin and Tovo (1996) and Lazzarin et al. (1998). The explanation lies in the
fact that the root radius of a semi-infinite notch (rather than a notch of finite length) could not be said as
large or small, since there is no other length scale in Fig. 1 that may be used for comparison. Of course, for
a finite notch in a finite solid, different radii of the notch would lead to different values of the Y-factor.

By comparing (17a,c) with the traditional formula of J in terms of stress intensity factor for a semi-
infinite sharp crack having the well-known inverse square root singularity, it can be seen that there actually
exists a new factor, denoted here by Y, which represents the divergence of J contributed by a notch con-
taining an arc at the root from that contributed by a plane crack. Obviously, different shapes of the arc at
the notch root will yield different values of the Y factor; the external geometrical configuration and loading
condition will also influence Y.

Another expected result is that the J-integral for a plane crack is always larger than that of a notch
having the same length as that of the crack.

Thus, an intriguing question arises as to why previous researchers have encountered little, if any, dif-
ficulty in measuring J from, say, the widely used compact tension (CT) specimens. The main reason is that
these experimental studies are mostly based on the compliance technique built upon the principle of
minimal potential energy. For two-dimensional notch problems, the J-integral, in its energy release rate
form, is given by (Kanninen and Popelar, 1985):

J = —dIl/da (18)
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163,

short crack

Fig. 2. Short crack in front of a notch root.

where da denotes the change in notch length and dIT refers to the corresponding change in potential energy
II for a given notch configuration. Eq. (18) leads to a finite difference method for obtaining approximate
values of J using the small deformation theory (see, e.g. Rice, 1968b; Ranaweera and Leckie, 1982;
Kanninen and Popelar, 1985). The compliance method has been well demonstrated, even for generalized
non-linear elastic power-law hardening materials, with:

J ~ —[lI(a+ Aa) — II(a)]/Aa (19)

where Aa should be much smaller than the original notch length a (for example, Aa has been customarily
chosen as Aa = 0.001a).

The conclusions reached in this paper are in fact not at odds with the widely recognized compliance
technique, because the J-integral measured from (19) has implicitly included the contribution induced from
the projected values of the J,-integral along notch surfaces as well as the arc at the notch root. However,
because J is sensitive to the geometrical configuration of the notch, this may explain why there is large scatter
in the toughness and fatigue data measured by different researchers for nominally identical materials.

Finally, in situations where a short crack has initiated from the notch tip E (see Fig. 2), the stress
concentration is released by the formation of the short crack. However, the conclusions reached above
should still hold although detailed stress distributions along the arc bisected by the crack are expected to be
quite different from those derived by Lazzarin and Tovo (1996). The contribution to J induced from the arc
cut by the crack should be much smaller that those listed in Tables 1 and 2 due to the release of stress
concentration near the notch root. For brevity, however, this topic will not be elaborated further.

5. Conclusion

Based on the results presented in this paper, the following conclusions can be drawn:

(1) A new condition that restricts the path-independence of the J-integral is obtained. That is, the projected
contributions from the J>-integral evaluated in local coordinate system along the integration path
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(traction-free surfaces) must vanish in order to ensure the path-independence of J. For a V-notch, J is
path-dependent and its value is dependent upon the selection of the starting and ending points on notch
surfaces, even though these surfaces are traction-free. This conclusion is valid even if the V-notch is sub-
jected to a loading symmetrical with respect to its geometrical symmetrical line. For a U-notch, the
path-independence of J is ensured as the projected values induced from the J,-integral vanish, subject
to the condition that the selected integration path encloses completely the notch root. However, it
should be emphasized that, for both types of notch, the arc at the notch root always contributes to
J, even under remote symmetrical loadings.

(2) The J-integral induced from a notch with an arc at its root has a value that is always less than that from
a sharp crack under the same geometrical and loading conditions. This means that the formation of a
sharp crack releases more potential energy than the formation of a notch.

(3) The second component of the J;-vector, J,, plays an important role in studying fracture of notch-like
defects. This component should bring more attention in future investigations.

(4) Adequate studies are needed to quantify the errors associated with the path-independence assumption
of J when evaluating R-curves from notch specimens.
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Appendix A. Stress distribution near a notch root

The global Cartesian coordinate system (X, Y) used by Lazzarin and Tovo (1996) is slightly different
from the (x;,x,) system shown in Fig. 1. The two systems are related to each other by

X:xl—(R—rO)

Y:)Cz

(A.1)

where R is the radius of the arc and r, is the distance between the origin of (X,Y) and the notch root.
Similarly, from Eq. (A.1), the polar coordinates (p, ) used by Lazzarin and Tovo (1996) are related with
(r,0) in Fig. 1 by

p= \/(xl —R+7r) +x3 (A.2)
Y= tan‘l(xz/(xl —R+ rO))

where

— 2 2
rEVI R (A3)

0= tan_l ()Cz/xl)
The following coordinate transformation is introduced by Lazzarin and Tovo (1996):
Z=x+ix;=w!= (u+iv)? (A4)

where Z and w are complex, i = v/ —1, ¢ is an exponent depending on the shape of the notch, and (u,v)
represent a new curvilinear system with u = 0 denoting a sharp notch and u = constant > 0 denoting the
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traction-free surface of a blunt notch. By introducing a first order approximation, Lazzarin and Tovo
(1996) then obtained the following stress components:

oy - | (1 + Z)cos(l — 1)¥ cos(l + A)¥
s, :$<P> (3= 2)cos(1 — A)0 » + 7(1 — 2)¢ —cos(1 + )0
Ty o (1 —2)sin(1 — 2)0 sin(1 4 )9
P n—a COS(I -+ ,U)19
+ (—) [(3—24) — x(1 =A)]{ —cos(1+ p)o (A.5)
"o sin(1 + p)v
where
200 =m(2 —
*=n2=4) (A.6)
R=qro/(q—1)
The three constants A, u, y in (A.5) are determined by:
sin(dgm) + Asin(gn) =0
1= = (14 2)/q + Q=214 1) -1
it 0= = U g+ (0= DI+ 2) =1/ A

B=2)=x1=2)
x = —sin[(1 — A)qn/2]/ sin[(1 + A)qn/2]

With 2y = 30° for a typical V-notch (ASTM, 1990), ¢ = 11/6 ~ 1.8333. For a U-notch with 2y = 0°, ¢ = 2.
Thus, from (A.6), R = 2ry for a U-notch and R = 2.2ry for a V-notch with 2y = 30°. The corresponding
values for A, u, yx are listed in Egs. (14a) and (14b) of Section 3.

Upon substituting A, u, x into (A.5) and then into (12) and (13), a numerical integration could be
performed to calculate the contribution to J induced from a U-notch and a V-notch, respectively. The well-
known Chebyshev numerical scheme is adopted to carry out the integration in Eq. (12) with desired
accuracy.
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