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Abstract

This study attempts to clarify the conditions under which the J -integral is path-independent in U- and V-shaped

notch problems. The key is to determine the contribution to the J -integral evaluated in the global coordinate system

from the second component of the Jk-vector evaluated in the local coordinate system along the traction-free surfaces

that form part of the integration path. It is found that the global J -integral is path-independent only if the projected

contribution from the J2-integral to J vanishes. The J -integral for a V-shaped notch is, strictly speaking, path-

dependent even under remote symmetrical loading. This is due to the fact that, unlike in the case of a line- or plane-

crack, the value of the J -integral calculated along a closed contour surrounding the V-shaped notch is dependent on the

selection of the starting and ending points on the notch surface. In other words, the traction-free surface of the

V-shaped notch does contribute to the J -integral due to the non-zero projected values induced from the J2-integral.
For a U-shaped notch, the path-independence of the J -integral is established if the integration path completely

encloses the notch root. This is because both the upper and lower notch surfaces of the U-shaped notch are parallel to

the geometric symmetrical line (the x1-axis) and hence the projected values from the J2-integral vanish. Furthermore, it

is found that the small arc at the root of the notch (whether U- or V-shaped) also contributes to the J -integral even if

the remote loading is symmetrical. These conclusions are derived by detailed analytical manipulations and by numerical

examples; the analytical solution obtained by Lazzarin and Tovo [Int. J. Fracture 78 (1996) 3] and Lazzarin et al. [Int. J.

Fracture 91 (1998) 269] for stress field in the vicinity of a notch root in an infinite elastic plane is used to calculate the

contribution induced from the arc with different radii. Some useful results for studying the fracture and fatigue of

notches are discussed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to assess and forecast the service life of structural components containing highly stress

concentrated notch-like defects is of great practical significance. There have been a number of investigations

aiming at predicting the fatigue life after crack initiation commences from a notch: recent contributions in
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this field include Kujawski (1991), Shin et al. (1994), Xu et al. (1995), Lazzarin and Tovo (1996), Lazzarin

et al. (1998), Atzori et al. (1997), and Kujawski and Shin (1997). However, all these studies focus either on

how to calculate stress concentration factors and the associated stress distributions ahead of the notch

before crack initiation has occurred (from which the degree of accuracy for predicting fatigue crack ini-
tiation and subsequent crack propagation could be ensured), or on how to measure crack-growth resistance

curves (i.e., R curves) from notch specimens.

The path-independence of J -integral for plane cracks is well-known and widely exploited for studying

fracture in both linear and non-linear elastic materials (Rice, 1968a,b; Eshelby, 1970). This integral has also

been applied in situations where the crack is blunt (i.e., U- or V-shaped notches). Some major contributions

in this field can be found in the works by Blackburn (1972, 1977), Hutchinson (1979), McMeeking (1980),

Elhaddad et al. (1980), Atluri (1982), Castro (1982), Ranaweera and Leckie (1982), Batte et al. (1983),

Sinclair and Mullan (1982), Sinclair et al. (1984), Kanninen and Popelar (1985), and Glinka and Newport
(1987). These studies directly lead to the ASTM Standards (1990) for measuring R curves based on notch

specimens. However, the necessary conditions of the J -integral application, under which its path-inde-

pendence is valid, have received little attention.

Generally speaking, the widely recognized view regarding the use of the J-integral is that the traction-

free surfaces of a crack (or notch) does not yield any contribution to the integral evaluated along an ar-

bitrarily selected close contour originating from a point on the lower crack (notch) surface and extending

counterclockwise around the crack (notch) tip to a point on the upper surface (see, e.g., Kanninen and

Popelar, 1985). In other words, the value of J does not depend on the selection of the starting and ending
points of the integration path. However, to the authors� best knowledge, there appears to be no detailed

account of the necessary conditions under which the path-independence of the J -integral is ensured. Evi-
dences cited in this paper reveal that these conditions are sometimes overlooked (apart from the known

necessary condition that the stress path should be proportional or nearly proportional in the material),

which may lead to the misinterpretation or even incorrect use of the integral.

To proceed forward, we note that the J -integral as proposed by Rice (1968a,b) is only the first com-

ponent of a vector Jk ðk ¼ 1; 2Þ, representing the component of the vector in the direction parallel to the x1-
axis (here and below, the x1-axis is customarily chosen along the geometrical symmetrical line of a notch or
a crack). For a single plane crack, the Jk-vector is given by (Knowles and Sternberg, 1972; Budiansky and

Rice, 1973):
Jk ¼
I
Co

ðwnk � ui;kTiÞds ðk ¼ 1; 2Þ ð1Þ
where w denotes strain energy density, nk is unit outward normal vector to the closed contour Co, and ui, Ti
are displacement and traction vectors, respectively. The second component, J2, is less popular than Jð� J1Þ
due to its path-dependence nature (Herrmann and Herrmann, 1981). The closed path Co is chosen such

that it surrounds one crack tip and does not enclose the other tip (or other singularities). Otherwise, if the

path Co encloses the crack completely, the trivial result J1 ¼ J2 ¼ 0 holds (Herrmann and Herrmann, 1981).

Recent investigations show that J1 ¼ J2 ¼ 0 is still valid even when Co encloses strongly-interacting mul-
tiple cracks, so long as there is no other singularity outside Co and the projected values induced from both

components of the vector are taken into account (Chen and Hasebe, 1998).

Two typical notch problems are analyzed in this paper, one associated with the V-shaped notches and

the other with the U-shaped notches. For simplicity, notches embedded in two-dimensional, infinitely large

solids are considered (Fig. 1). Detailed manipulations (Section 2) and numerical calculations (Section 3) are

presented to show that caution must be taken when applying the J -integral in notch problems. It will be

demonstrated that the traction-free surfaces of a notch could not always ensure the path-independence of J ,
if the surfaces are partially or entirely inclined (or curved) with respect to the global x1-axis (i.e., the
symmetrical line of the notch). It is found that J is path-independent for a U-shaped notch if the notch root



Fig. 1. Notations and coordinate systems for a notch subjected to combined opening and shear loading at remote.
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is completely enclosed by the selected integration path, and always path-dependent for a V-shaped notch.

For the latter, the J2-integral evaluated in a local system that traverses along the inclined surface has a non-

vanishing projected value on the global x1-axis, causing the J -integral to be dependent upon the selection of
the starting and ending points of the integration path on notch surfaces. Furthermore, the traction-free arc

at the root of a V- or U-shaped notch always contributes to the J -integral, as a result of the projected value

induced from the J2-integral.
2. A notch under remote mixed-mode loading

The purpose of this section is not to deal with crack initiation and fatigue problems associated with

notches, but to provide the necessary conditions under which the path-independence of the J -integral is
valid. Special attention is directed at clarifying the important role of the J2-integral in notch-like problems.

With reference to Fig. 1, consider a V-shaped notch (i.e., a blunt crack) defined by a small circular arc

DEB
_

, radius R and centered at the origin O of the global coordinate system ðx1; x2Þ and two straight seg-
ments AB and CD inclined at an angle �c with respect to the x1-axis. A U-shaped notch is defined as the

special case of the V-notch with c ¼ 0. Tensile stress r1
22 and shear stress r1

12 are applied at remote, per-

pendicular and parallel to the geometric symmetric line of the notch, respectively. Three different closed

contours C1, C2 and C3 are introduced in Fig. 1, originating separately from points D, C, and F on the lower

surface of the notch and ending at points B, A, and H on the upper surface. The length of AB equals that of

CD, but HB has a length different from that of FD.
Because the J -integral is widely accepted as path-independent, one may customarily assert that J

evaluated along the above three closed contours should have identical values. For instance, some mani-
pulations and applications of J for a blunt crack were performed (see, e.g., McMeeking, 1980), and a test

method for determining the R curves from notch specimens was standardized by ASTM (1990). However,

as demonstrated below, this assertion has been based on the condition that the traction-free notch surfaces,

i.e., arc DEB
_

plus the two inclined straight segments, do not contribute to J ð� J1Þ defined in the global
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system. In fact, whether or why the basic condition is satisfied remains unclear since the role of the second

component of the Jk-vector, J2, in blunt crack problems is yet to be clarified.

Whilst J2 is in general path-dependent, it will be shown next that the path-independence of J is only

conditional, which should be used with caution when extrapolated to situations where the basic condition
may be violated. To calculate J for a blunt crack (Fig. 1), consider first the contribution of segment AB and

denote it by JAB in the global coordinate system ðx1; x2Þ. From (1), it follows that:
JAB ¼ J ð1Þ
1AB cosðp� cÞ � J ð1Þ

2AB sinðp� cÞ ¼ �J ð1Þ
1AB cos c� J ð1Þ

2AB sin c ð2Þ
where J ð1Þ
1AB and J ð1Þ

2AB are the two components of the Jk-vector calculated in the local coordinate system

ðxð1Þ1 ; xð1Þ2 Þ on segment AB in Fig. 1. Since AB is traction-free, we have:
J ð1Þ
1AB ¼

Z
AB

wnð1Þ1 ds ð3Þ

J ð1Þ
2AB ¼

Z
AB

wnð1Þ2 ds ð4Þ
where nð1Þk ðk ¼ 1; 2Þ are the components of the unit outward normal vector to the segment AB (Fig. 1).

Now, since nð1Þ1 ¼ 0 but nð1Þ2 ¼ 1 in the ðxð1Þ1 ; xð1Þ2 Þ system, Eq. (3) and hence the first term on the right-hand

side of Eq. (2) vanishes. However, Eq. (4), i.e., the second term in (2) does not, given instead by:
J ð1Þ
2AB ¼

Z B

A
wds ¼ 1

E

Z A

B
ðrð1Þ

11 Þ
2
dxð1Þ1 ð5Þ
where ds ¼ �dxð1Þ1 (Fig. 1) has been used, and E ¼ E for plane stress and E=ð1� m2Þ for plane strain, with E
and m representing the Young�s modulus and Poisson�s ratio, respectively. Apparently, the normal stress rð1Þ

11

parallel to segment AB contributes to J ð1Þ
2AB. As pointed out by Herrmann and Herrmann (1981), rð1Þ

11 in

general does not vanish even though the surface of AB is traction-free. Consequently, the second component

of the J ð1Þ
k -vector evaluated in the local coordinate system along AB has non-zero contribution to JAB in Eq.

(2). Moreover, different choices of AB will generate different contributions to J .
For segment DC on the lower surface of the notch, the following result holds:
JDC ¼ J ð2Þ
1DC cos c� J ð2Þ

2DC sin c ð6Þ

where
J ð2Þ
1DC ¼ 0

J ð2Þ
2DC ¼ 1

E

Z C

D
ðrð2Þ

11 Þ
2
ds ¼ 1

E

Z D

C
ðrð2Þ

11 Þ
2
dxð2Þ1

ð7Þ
Here, the superscript (2) refers to quantities associated with the local coordinate system ðxð2Þ1 ; xð2Þ2 Þ, and
ds ¼ �dxð2Þ1 , as shown in Fig. 1. Again, different selections of segment DC will lead to different and, gen-

erally speaking, non-zero contributions to JDC.
More importantly, JAB in Eq. (2) is negative since J ð1Þ

2AB in (5) is positive, whereas JDC of (6) is also negative

since J ð2Þ
2DC of (7) is positive. Thus, JAB and JDC do not cancel each other, even though the remote loading is

symmetrical with r1
12 ¼ 0 (Fig. 1).

In order to further clarify the situation, the values of J evaluated along three different paths C1, C2 and
C3 are compared. It is straightforward to show that:
JC1 þ JBA � JC2 þ JCD ¼ 0 ð8aÞ
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or, equivalently:
JC1 ¼ JC2 þ ðJAB þ JDCÞ ð8bÞ

Since the sum JAB þ JDC does not vanish, it follows that:
JC1 6¼ JC2 ð9Þ
We have therefore proved that the J -integral is path-dependent in V-shaped notch problems. In addition,

for path C3, the segments AH and CF have different lengths, and:
JC2 ¼ JC3 � ðJAH þ JFCÞ ð10Þ
Due to the different contributions induced from J2 along the two segments AH and CF , the bracketed term

in (10) does not vanish except in the limit when c ¼ 0. It is therefore clear that J depends also on the se-

lection of the starting and ending points of the path on the upper and lower surfaces of the notch. Indeed,

these contributions are dependent on the selection of points F and H as well as points A and C, resulting in:
JC2 6¼ JC3 ð11Þ

The above results reveal that for a V-shaped notch, the path-independence of J is conditional, and hence

must be dealt with cautiously. Only when the surfaces of the notch are parallel to its geometrical symmetry

line, i.e., the x1-axis, with c ¼ 0 (i.e., a U-shaped notch), could the contributions induced from notch

surfaces to J vanish. In other words, only when the projected values of the second component of the Jk-
vector defined in the local systems ðxð1Þ1 ; xð1Þ2 Þ, or ðxð2Þ1 ; xð2Þ2 Þ, do not contribute to J defined in the global

system ðx1; x2Þ could the value of J be independent of the selection of the starting and ending points on the

notch surfaces for the closed contour.
The above manipulations further reveal that the second component of the Jk-vector plays an important

role. Therefore, for traction-free surfaces, attention should be focused on this component in local systems

and its contribution to J in the global system.

Let us revisit the configuration shown in Fig. 1. The non-trivial contribution induced from the arc DEB
_

to J can be estimated in a way analogous to that for straight segments, and hence will not be repeated

below. However, it should be pointed out that the contribution of DEB
_

to J does not vanish even if the

notch has surfaces parallel to the x1-axis (i.e., the U-shaped notch), and this conclusion still holds even

under pure Mode I loading with r1
12 ¼ 0. Furthermore, when the normal stress parallel to the tangential

direction at any point on the arc DEB
_

becomes large due to stress concentration near the notch root, its

contribution to J is also likely to be large. The contribution induced from the whole arc may therefore yield

considerable errors in J -integral applications, e.g., the R curve evaluation, as demonstrated in the next

section.
3. Notch root contribution: numerical examples

To support the above conclusions, numerical calculation is needed to quantify the contribution induced

from the whole arc DEB
_

at the notch root (Fig. 1). For simplicity, a circular arc with radius R is assumed.

The contribution of the arc to J is
Jarc ¼ � 1

E

Z f=2

�f=2
½rð3Þ

11 ðhÞ�
2R sin/dh ¼ � 1

E

Z f=2

�f=2
½rð3Þ

11 ðhÞ�
2R sinðp=2þ hÞdh

¼ 1

E

Z f=2

�f=2
rð3Þ
11 ðhÞ

h i2
R cos hdh ð12Þ
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where the angles / and h are defined in Fig. 1, rð3Þ
11 ðhÞ refers to the normal stress component along the

tangential direction on the surface of the circular arc defined in a local coordinate system ðxð3Þ1 ; xð3Þ2 Þ, f ¼ p
for a U-shaped notch, and f ¼ p� 2c for a V-shaped notch.

Note that the integrand in (12) is an even function of h so that the integral Jarc, generally speaking, does
not vanish. In other words, the contribution induced from the upper half arc and that from the lower half

arc do not cancel each other even if the far-field loading is symmetrical with r1
12 ¼ 0; rather, the two

contributions add to yield the total contribution from the arc. Therefore, Eq. (12) has provided a clear

evidence on the non-zero contribution from the notch root to J . The total J of the notch is the sum of Jarc
and the J -integral along a path away from the notch root that does not contain any of the notch surfaces

(e.g., path C2 or C3 in Fig. 1).

To calculate Jarc, one needs to know the detailed distribution of stress component rð3Þ
11 ðhÞ along the arc

DEB
_

(Fig. 1). This component is related to stresses r11, r12, r22 defined in the global system ðx1; x2Þ by:
rð3Þ
11 ðhÞ ¼ r11 cos

2 /þ 2r12 sin/ cos/þ r22 sin
2 / ð13Þ
where / ¼ p=2þ h. Although there have been numerous investigations on notch problems, most focus
either on stress concentration just ahead of the notch or on a small crack initiating from the notch root due

to fatigue. However, the illuminating work of Lazzarin and Tovo (1996) and Lazzarin et al. (1998) does

provide an analytical solution with first order approximation for near-notch surface stresses. For com-

pleteness, a concise summary of stress distribution near the notch root is given in Appendix A.

Two scenarios are considered: c ¼ 0� and c ¼ 15� (Fig. 1), corresponding to a U-shaped notch and a V-

shaped notch, respectively. The parameters associated with the first order approximation of Lazzarin and

Tovo (1996) are calculated as:
r0 ¼ R=2; k ¼ 0:5; v ¼ 1:0; l ¼ �0:5 ð14aÞ
for c ¼ 0�, and
r0 ¼ R=2:2; k ¼ 0:5015; v ¼ 1:0710; l ¼ �0:4239 ð14bÞ
for c ¼ 15�. The definitions of r0, k, v and l are given in Appendix A. The maximum stress at the notch tip

is linked to a field parameter K�
1 by means of notch root radius and opening angle 2c (implicitly via r0 and k,

respectively):
rmax ¼
4K�

1 r
k�1
0ffiffiffiffiffiffi

2p
p

½ð1þ kÞ þ vð1� kÞ�
ð15Þ
where
K�
1 ¼

ffiffiffiffiffiffi
2p

p
Lim
R!0

ðrhÞh¼0R
1�k ð16Þ
Here, rh is the hoop stress, and K�
1 represents a field parameter proportional to the remote stress r1

22, which

degenerates in the case of R ¼ 0 and c ¼ 0 to the conventional stress intensity factor K1 (Gross and

Mendelson, 1972). When SI units are adopted, the length parameters such as the notch root radius R are

expressed in meters, the stresses r1
22 and rmax as well as the Young�s modulus E are in MPa, and the J -

integral is in MN/m, respectively. For a U-shaped notch with zero opening angle, the ratio rmax=K�
1 has unit

m�0:5. On the other hand, for a V-shaped notch with an opening angle 2c ¼ 30�, the unit of rmax=K�
1 is

m�0:4986. The difference between these two kinds of notches is therefore small for the purpose of engineering

design, but physically this fact should be highlighted especially when the notch root ratio R tends to zero.
This is because the solution of Lazzarin and Tovo (1996) is only a first order approximation. Consequently,

it is unclear whether the parameters ðr0; k; v; lÞ associated with the first order approximation remain
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unchanged as the notch root ratio R tends to zero. In other words, only if rmax=K�
1 has unit m�0:5 will K�

1 be

considered as the conventional stress intensity factor.

According to Gross and Mendelson (1972), a natural expression of the normalized J -integral for U- and

V-shaped notches is
Table

Norma

r0=R

0.5
Jarc ¼
Y

E
R

K�
1

dR1�k1

� �2
ð17aÞ
where Y is a non-dimensional parameter introduced for numerical analysis, the subscript arc refers to the
quantity contributed by the notch arc only, and dR1�k1 is introduced by Gross and Mendelson (1972) as:
K�
1 ¼ dR1�k1rmax ð17bÞ
Thus, upon suitable coordinate transformation and substitution of Eq. (A.5) into (13) and subsequently

into (12), the normalized value of the J -integral induced from the projected value of the J2-integral eva-
luated along the whole arc, with h ranging separately from �p=2 to p=2 for a U-shaped notch and from

�5p=12 to 5p=12 for a V-shaped notch, is given by:
Jarc ¼
Y

E
frmaxg2R ð17cÞ
After calculating the contribution of the notch arc to Jarc, it is found that Y ¼ 0:5453 for the U-notch and

0.5004 for the V-notch ðc ¼ 15�Þ. It is worth mentioning that Y is dependent of the notch opening angle c,
but not the notch root radius R. It is emphasized here that Y is independent of R because, in the present case

where the solid is infinitely large, there is no other length scale that can be used to normalize R. This
conclusion is no longer valid for a finite notch in a finite plane solid, which can be solved using, say, the
finite element method (FEM). In other words, the numerically calculated values of Y in (17a,c) will be

different if different lengths of the finite notch, say a, are used to normalize the root radius R. It is expected,
however, that in the limit when R=a ! 0, Y will approach a constant, e.g., 0.5453 for a U-notch.

It is intriguing to note that the Y value for a U-notch is larger than that for a V-notch under the same

remote loading conditions. However, it should be emphasized that Eq. (17a) or (17c) does not account for

the contribution of the upper and lower straight lines of the V-notch, and that the calculation for the U-

notch is performed from �p=2 to p=2 and for the V-notch from �5p=12 to 5p=12 ðc ¼ 15�Þ. Again, this

conclusion is no longer valid for a finite notch in a finite plane solid, which can be solved with FEM if the
numerically calculated values of Y in (17a,c) contain the contribution induced from the upper and lower

straight lines for the V-shaped notch. The predicted Jarc values are listed in Table 1 for a U-shaped notch

with r0=R ¼ 0:5; the following cases are considered: r0 ¼ 0:125, R ¼ 0:25; r0 ¼ 0:25, R ¼ 0:5; r0 ¼ 0:5,
R ¼ 1:0; r0 ¼ 0:75, R ¼ 1:5; r0 ¼ 1:00, R ¼ 2:00; r0 ¼ 1:25, R ¼ 2:50; r0 ¼ 1:50, R ¼ 3:00; r0 ¼ 1:75,
R ¼ 3:50; and r0 ¼ 2:00, R ¼ 4:00. Similarly, Table 2 presents the predicted values of Jarc for a V-shaped

notch with r0=R ¼ 0:4545; the following cases are considered: r0 ¼ 0:125, R ¼ 0:275; r0 ¼ 0:25, R ¼ 0:55;
r0 ¼ 0:500, R ¼ 1:100; r0 ¼ 0:750, R ¼ 1:650; r0 ¼ 1:00, R ¼ 2:200; r0 ¼ 1:25, R ¼ 2:75; r0 ¼ 1:50, R ¼ 3:30;
r0 ¼ 1:75, R ¼ 3:85; and r0 ¼ 2:00, R ¼ 4:4. The numerical results of Tables 1 and 2 not only confirm our
calculations but also confirm the independence feature of Y .
1

lized values of Jarc for a U-shaped notch with root ratio r0=R ¼ 0:5

Y ¼ JarcE

RðrmaxÞ2
ffiffiffi
R

p
rmax

K�
1

0.5453 1.128



Table 2

Normalized values of Jarc for a V-shaped notch with root ratio r0=R ¼ 0:4545

r0=R Y ¼ JarcE

RðrmaxÞ2

ffiffiffi
R

p
rmax

K�
1

0.4545 0.5004 0.7852
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Note that, for a fixed notch root radius, the J -integral associated with a U-shaped notch is always larger
than that associated with a V-shaped notch. This implies that the arc of the U-shaped notch yields more

contribution to J than that of the V-shaped notch, for two reasons. Firstly, the upper and lower integration

limits in (12) for the V-notch, �ðp=2� cÞ, are smaller than those for the U-notch, �p=2. Secondly, whilst
the straight surfaces of the U-notch are parallel to the x1-axis and hence yield no contribution to J , the
inclined surfaces of the V-notch have non-zero contributions to the J . As the calculation of the contri-

butions induced from the two inclined surfaces requires not only detailed knowledge on the distribution of

normal stress along the tangential direction of the surfaces but also integration over an infinite interval yet

to be determined, it is deemed beyond the scope of this paper.
Again, it should be emphasized that although the Y values listed in Table 2 are independent of R, this

conclusion cannot be extrapolated to a finite V-shaped notch in a finite plane solid. For both U- and

V-shaped notches, Y is a function of R=a, with Y approaching asymptotically a constant when R=a ! 0.
4. Discussion

Eqs. (17a) or (17c) provides a fundamental understanding of the J -integral analysis in situations where
inclined or curved traction-free surfaces are concerned. The necessary conditions under which J is path-

independent have been clarified in detail, which is of significance in practical applications of the integral. Of

great interest is that numerical results of the normalized J -integral are independent of the notch root radius

R (or r0) for a U-notch (Table 1), and are insensitive to variations in R for a V-notch (Table 2). These results

are actually expected, which not only validate the present calculations, but also confirm the analytical

formulations presented by Lazzarin and Tovo (1996) and Lazzarin et al. (1998). The explanation lies in the

fact that the root radius of a semi-infinite notch (rather than a notch of finite length) could not be said as

large or small, since there is no other length scale in Fig. 1 that may be used for comparison. Of course, for
a finite notch in a finite solid, different radii of the notch would lead to different values of the Y -factor.

By comparing (17a,c) with the traditional formula of J in terms of stress intensity factor for a semi-

infinite sharp crack having the well-known inverse square root singularity, it can be seen that there actually

exists a new factor, denoted here by Y , which represents the divergence of J contributed by a notch con-

taining an arc at the root from that contributed by a plane crack. Obviously, different shapes of the arc at

the notch root will yield different values of the Y factor; the external geometrical configuration and loading

condition will also influence Y .
Another expected result is that the J -integral for a plane crack is always larger than that of a notch

having the same length as that of the crack.

Thus, an intriguing question arises as to why previous researchers have encountered little, if any, dif-

ficulty in measuring J from, say, the widely used compact tension (CT) specimens. The main reason is that

these experimental studies are mostly based on the compliance technique built upon the principle of

minimal potential energy. For two-dimensional notch problems, the J -integral, in its energy release rate

form, is given by (Kanninen and Popelar, 1985):
J ¼ �dP=da ð18Þ



Fig. 2. Short crack in front of a notch root.
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where da denotes the change in notch length and dP refers to the corresponding change in potential energy

P for a given notch configuration. Eq. (18) leads to a finite difference method for obtaining approximate

values of J using the small deformation theory (see, e.g. Rice, 1968b; Ranaweera and Leckie, 1982;

Kanninen and Popelar, 1985). The compliance method has been well demonstrated, even for generalized

non-linear elastic power-law hardening materials, with:
J � �½Pðaþ DaÞ �PðaÞ�=Da ð19Þ

where Da should be much smaller than the original notch length a (for example, Da has been customarily

chosen as Da ¼ 0:001a).
The conclusions reached in this paper are in fact not at odds with the widely recognized compliance

technique, because the J -integral measured from (19) has implicitly included the contribution induced from

the projected values of the J2-integral along notch surfaces as well as the arc at the notch root. However,

because J is sensitive to the geometrical configuration of the notch, this may explain why there is large scatter

in the toughness and fatigue data measured by different researchers for nominally identical materials.
Finally, in situations where a short crack has initiated from the notch tip E (see Fig. 2), the stress

concentration is released by the formation of the short crack. However, the conclusions reached above

should still hold although detailed stress distributions along the arc bisected by the crack are expected to be

quite different from those derived by Lazzarin and Tovo (1996). The contribution to J induced from the arc

cut by the crack should be much smaller that those listed in Tables 1 and 2 due to the release of stress

concentration near the notch root. For brevity, however, this topic will not be elaborated further.
5. Conclusion

Based on the results presented in this paper, the following conclusions can be drawn:

(1) A new condition that restricts the path-independence of the J -integral is obtained. That is, the projected
contributions from the J2-integral evaluated in local coordinate system along the integration path
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(traction-free surfaces) must vanish in order to ensure the path-independence of J . For a V-notch, J is

path-dependent and its value is dependent upon the selection of the starting and ending points on notch

surfaces, even though these surfaces are traction-free. This conclusion is valid even if the V-notch is sub-

jected to a loading symmetrical with respect to its geometrical symmetrical line. For a U-notch, the
path-independence of J is ensured as the projected values induced from the J2-integral vanish, subject
to the condition that the selected integration path encloses completely the notch root. However, it

should be emphasized that, for both types of notch, the arc at the notch root always contributes to

J , even under remote symmetrical loadings.

(2) The J -integral induced from a notch with an arc at its root has a value that is always less than that from

a sharp crack under the same geometrical and loading conditions. This means that the formation of a

sharp crack releases more potential energy than the formation of a notch.

(3) The second component of the Jk-vector, J2, plays an important role in studying fracture of notch-like
defects. This component should bring more attention in future investigations.

(4) Adequate studies are needed to quantify the errors associated with the path-independence assumption

of J when evaluating R-curves from notch specimens.
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Appendix A. Stress distribution near a notch root

The global Cartesian coordinate system ðX ; Y Þ used by Lazzarin and Tovo (1996) is slightly different
from the ðx1; x2Þ system shown in Fig. 1. The two systems are related to each other by
X ¼ x1 � ðR� r0Þ
Y ¼ x2

ðA:1Þ
where R is the radius of the arc and r0 is the distance between the origin of ðX ; Y Þ and the notch root.

Similarly, from Eq. (A.1), the polar coordinates ðq; #Þ used by Lazzarin and Tovo (1996) are related with

ðr; hÞ in Fig. 1 by
q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � Rþ r0Þ2 þ x22

q
# ¼ tan�1ðx2=ðx1 � Rþ r0ÞÞ

ðA:2Þ
where
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
h ¼ tan�1ðx2=x1Þ

ðA:3Þ
The following coordinate transformation is introduced by Lazzarin and Tovo (1996):
Z ¼ x1 þ ix2 ¼ wq ¼ ðuþ ivÞq ðA:4Þ

where Z and w are complex, i ¼

ffiffiffiffiffiffiffi
�1

p
, q is an exponent depending on the shape of the notch, and ðu; vÞ

represent a new curvilinear system with u ¼ 0 denoting a sharp notch and u ¼ constant > 0 denoting the
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traction-free surface of a blunt notch. By introducing a first order approximation, Lazzarin and Tovo

(1996) then obtained the following stress components:
r#

rq

rq#

8<
:

9=
; ¼ rmax

4

q
r0

� �k�1 ð1þ kÞ cosð1� kÞ#
ð3� kÞ cosð1� kÞ#
ð1� kÞ sinð1� kÞ#

8<
:

9=
;

0
@ þ vð1� kÞ

cosð1þ kÞ#
� cosð1þ kÞ#
sinð1þ kÞ#

8<
:

9=
;

þ q
r0

� �l�k

ð3½ � kÞ � vð1� kÞ�
cosð1þ lÞ#
� cosð1þ lÞ#
sinð1þ lÞ#

8<
:

9=
;
1
A ðA:5Þ
where
2a ¼ pð2� qÞ
R ¼ qr0=ðq� 1Þ

ðA:6Þ
The three constants k, l, v in (A.5) are determined by:
sinðkqpÞ þ k sinðqpÞ ¼ 0

l ¼ 1=q� 1� ½ð1� kÞ2 � ð1þ kÞ=q� þ vð1� kÞ½ð1þ kÞ � 1=q�
ð3� kÞ � vð1� kÞ

( )

v ¼ � sin½ð1� kÞqp=2�= sin½ð1þ kÞqp=2�

ðA:7Þ
With 2c ¼ 30� for a typical V-notch (ASTM, 1990), q ¼ 11=6 � 1:8333. For a U-notch with 2c ¼ 0�, q ¼ 2.

Thus, from (A.6), R ¼ 2r0 for a U-notch and R ¼ 2:2r0 for a V-notch with 2c ¼ 30�. The corresponding

values for k, l, v are listed in Eqs. (14a) and (14b) of Section 3.

Upon substituting k, l, v into (A.5) and then into (12) and (13), a numerical integration could be

performed to calculate the contribution to J induced from a U-notch and a V-notch, respectively. The well-
known Chebyshev numerical scheme is adopted to carry out the integration in Eq. (12) with desired

accuracy.
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